
Computational Visual Media 
DOI 10.1007/s41095-022-0291-7 Vol. 9, No. x, month year, xx–xx

Research Article

Angle-Uniform Parallel Coordinates

Kaiyi Zhang1,∗, Liang Zhou2,∗(�), Lu Chen1, Shitong He1, Daniel Weiskopf3, Yunhai Wang1

© The Author(s) 2021.

Abstract We present angle-uniform parallel

coordinates, a data-independent technique that

deforms the image plane of parallel coordinates so

that the angles of linear relationships between two

variables are linearly mapped along the horizontal

axis of the parallel coordinates plot. Despite being

a common method for visualizing multidimensional

data, parallel coordinates are ineffective for revealing

positive correlations since the associated parallel

coordinates points of such structures may be located

at infinity in the image plane and the asymmetric

encoding of negative and positive correlations may

lead to unreliable estimations. To address this issue,

we introduce a transformation that bounds all points

horizontally using an angle-uniform mapping and

shrinks them vertically in a structure-preserving

fashion; polygonal lines become smooth curves

and symmetric representation of data correlations

is achieved. We further propose a combined

subsampling and density visualization approach

to reduce visual clutter caused by overdrawing. Our

method enables accurate visual pattern interpretation

of data correlations, and its data-independent nature

makes it applicable to all multidimensional datasets.

The usefulness of our method is demonstrated using

examples of synthetic and real-world datasets.
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Fig. 1 Point-line duality. (a) A point in Cartesian coordinates

(i.e., a data point in a scatterplot) becomes a line in parallel

coordinates, whereas (b) a line in Cartesian coordinates becomes

a point in parallel coordinates: it is the intersection of a cluster

of lines in parallel coordinates that represent a set of points

on a Cartesian line. Points that represent Cartesian lines

with negative slopes (negative correlations) lie in between their

own pair of axes, whereas (c) points that represent positive

correlations lie outside.

1 Introduction

Parallel coordinates are a popular visualization

method for multidimensional data [17, 32]. A data

point in n-dimensional space is mapped to a polygonal

line (polyline) with vertices on n vertical axes, while

a line in Cartesian coordinates is represented as an

intersection point of polylines in parallel coordinates
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(see Fig. 1). The main benefit of parallel coordinates is

their scalability in dimensionality: more axes just need

to be added with increasing data dimensionality. A

further advantage is that it is easy to trace data across

multiple dimensions in parallel coordinates.

However, a key issue when using parallel coordinates

is the difficulty of visual pattern interpretation,

especially for positive correlations. In this paper,

we refer to the 2D space of a scatterplot as Cartesian

space, in which Cartesian coordinates represent the

two data attributes describing a data point. An

ideal linear correlation shows up as a straight line

in a scatterplot; we refer to this as a Cartesian

line (see Fig. 1(left)(b,c)). In parallel coordinates,

the associated points of Cartesian lines with positive

slopes lie outside of their own pair of axes (see

Fig. 1(c)). Furthermore, if the angle of a line is 45◦, the

corresponding point would be at infinity in the image

plane, making it impossible for users to observe.

We further note that linear and symmetric encodings

are preferred by humans for quantitative analysis.

However, the mapping between the angles of Cartesian

lines and the horizontal coordinates of associated points

in parallel coordinates given by the point-line duality

(Section 3.1) is nonlinear and asymmetric. As a result,

Li et al. [20] reported a perception bias toward negative

correlations and a general underestimation of both

negative and positive correlations of users of parallel

coordinates, as shown by a user experiment.

Overdrawing is another issue when using parallel

coordinates. Visual patterns are clear and traceable in

parallel coordinates when the scale of the data is small.

However, the visualization quickly becomes cluttered

with larger datasets as visual patterns are obscured

by the overlapping polylines. These drawbacks greatly

hamper the readability of parallel coordinates and limit

their applicability.

There are techniques to visualize local linear

relationships in parallel coordinates [24, 36].

Unfortunately, the asymmetric representation of

Cartesian lines is not fully addressed by either

technique, as different visual mappings are used for

negative and positive relationships [24] and positive

linear correlations with slopes close to 1 still cannot

be visualized in the same way as intersection points

showing negative correlations [36]. We thus present

angle-uniform parallel coordinates, a novel method

that achieves symmetric and unified representation of

data correlations in a confined image plane.

The first contribution of this paper is the angle-

uniform parallel coordinates model (see Fig. 2(b)). By

transforming the image plane of parallel coordinates

in two directions, this model maps parallel polylines

into smooth intersecting curves. Specifically, all

points are deformed into a bounded area by a linear

mapping of angles in the horizontal direction. In

the vertical direction, the points are shrunk in a

structure-preserving fashion to ensure the smoothness

and symmetry of the deformed curves. Furthermore,

no information in the traditional parallel coordinates

is lost during the transformation, and the relative

relationships between original data points and the

continuity across different dimensions are carefully

preserved.

Our second contribution is a combined subsampling

and density visualization approach (see Fig. 2(c)) that

reduces clutter to facilitate correlation visualization in

angle-uniform parallel coordinates. The combination

of subsampled data curves and density plots allows

a coherent and clear visualization of both significant

global patterns and important local patterns.

Our third contribution is an interactive system that

supports corner filtering and density plot brushing

(Fig. 2d), two new interaction techniques specially

designed for combined subsampling and density

visualization, to facilitate exploratory data analysis.

Using a synthetic dataset, we compare different

variants of parallel coordinates and show that users

can produce accurate interpretations of negative and

positive correlations alike using angle-uniform parallel

coordinates. To further demonstrate the usefulness

of our method, we provide further visual analysis

examples of real-world multidimensional datasets,

using traditional parallel coordinates, scatterplots,

and angle-uniform parallel coordinates. Compared

to other parallel coordinates methods, our angle-

uniform parallel coordinates are data-independent, so

can be applied to any multidimensional dataset and

easily incorporated within existing parallel coordinate

systems.

2 Related Work

Parallel coordinates are commonly used for

visualizing multidimensional data. Early works

advocating such methods can be traced back to

Inselberg [17] and Wegman [32]. Inselberg formulates

comprehensive mathematical descriptions of geometric

entities in parallel coordinates and uses them to

visualize multidimensional geometry [18]. Wegman

applies parallel coordinates to visual data mining

of multidimensional data [32]. Both works study

parallel coordinates from the perspective of projective
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Fig. 2 Processing pipeline of angle-uniform parallel coordinates, using a synthetic dataset containing several linearly correlated

structures (see Section 6.1 for details of the data). (a) Traditional parallel coordinates have an image plane that extends to infinity.

(b) Angle-uniform parallel coordinates deform the image plane into a bounded, structure-preserving 2D space, providing symmetric

representation of negative and positive correlations. (c) The combined subsampling and density visualization reduces visual clutter

while preserving global and local patterns. Patterns indicating strong correlations are marked with numbered rounded boxes; the

orange square below the parallel coordinates gives a scatterplot of the data for reference. (d) Interactive exploration of the new

visualization is aided by corner filtering and density plot brushing as demonstrated by the associations between brushed regions and

their corresponding structures in the scatterplot.

geometry and represent parallel coordinates using

homogeneous coordinates [18, 33]. A survey of the

state of the art of parallel coordinates can be found

in [14].

2.1 Correlation Analysis with Parallel

Coordinates

The basic and most popular visualization approach

using parallel coordinates is to display only polylines

that correspond to multidimensional data points.

Correlations are shown as high-density intersections of

polylines, which are, however, asymmetric for negative

and positive correlations. The asymmetry leads to the

underestimation of positive correlations by users [20].

Hybrid methods that combine parallel coordinates with

other visual mappings, such as scatterplots, scatterplot

matrices (SPLOMs), or variants thereof, improve the

ability to find and analyze correlations. Scatterplots

can be drawn next to parallel coordinates to show

pair-wise correlations of data attributes [15, 26, 27].

Alternatively, scatterplots can be embedded between

adjacent axes in parallel coordinates [34]. The P-

SPLOM technique [30] unifies SPLOM, 2D parallel

coordinates, and 3D parallel coordinates with smooth

transitions between them. Flexible user-customized

visualizations in the style of parallel coordinates or

SPLOMs are available [4].

Local linear relationships can be directly visualized

in parallel coordinates. One technique [24] estimates

local linear relationships to visualize correlations

in parallel coordinates using the point-line duality.

Another method [36] uses p-flat indexed points,

compact representations of p-dimensional generalized

flat surfaces, to visualize local multidimensional linear

relationships in parallel coordinates. While negative

correlations are shown effectively, visual mappings

of positive correlations have their own limitations in

both techniques. Furthermore, both works provide a

nonlinear relationship between the slopes of Cartesian

lines and the positions of intersections in parallel

coordinates.

2.2 Curved Parallel Coordinates

Our approach leads to a deformation of the plane

of parallel coordinates and, thus, transforms polylines

to curves. Curves have been used before to replace

polylines, but for different reasons and using different

curve models to ours. For example, curves can be

designed to facilitate easier tracing than polylines [10,

15, 34]. As another example, curve representations with

bundling enable the visualization of clusters [12, 22, 35],

and the visualization of multiple and higher-order

correlations can be aided by the use of curves [29].

However, important geometric information in polyline

parallel coordinates is lost in the above works: for

example, intersection patterns are lost. Unlike existing

curved parallel coordinates, our technique preserves

important geometric properties from the original

polyline-based parallel coordinates.

The transformation from traditional parallel

coordinates to our angle-uniform parallel coordinates

is closely related to hyperbolic geometry. Hyperbolic

geometry [1] is a non-Euclidean geometry that satisfies

all of Euclid’s postulates except for the parallel

postulate. In hyperbolic geometry, parallel lines pass

through a common point. Therefore, an infinite space

in Euclidean geometry can be represented in a limited

hyperbolic space. A very well-known example of the

usage of hyperbolic space is the painting series ‘Circle

Limit’ by Escher [21]. In the context of visualization,

hyperbolic geometry has been used for visualizing

large graphs with the focus+context approach [23]. In

3
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contrast, our hyperbolic-inspired mapping generates a

static space that introduces no context change, and

therefore preserves the mental map of users.

2.3 Clutter Reducing Visualization

Parallel coordinates quickly become cluttered with

increasing data points. Subsampling from the full

dataset and density representations are two general

approaches to reducing clutter in visualization [8]. By

subsampling, local patterns can be seen in parallel

coordinates, but it cannot faithfully convey global

information. The density approach replaces line

plots by density representations, e.g., by different

kinds of binning methods [2, 19, 25] or continuous

modeling [13]. However, this can blur the visualization

as a whole and remove interesting local patterns,

making correlation recognition harder in parallel

coordinates. Our new combined subsampling and

density visualization integrates the benefits of curve

representation of subsampled data and the advantages

of density representation.

3 Background and Rationale

In this section, we explain the theoretical foundation

of parallel coordinates, namely point-line duality, and

the rationale of our method. More details of geometric

analysis in parallel coordinates can be found in the book

by Inselberg [18].

3.1 Point-Line Duality

The point-line duality specifies the mapping relation

of basic geometry entities, i.e., points and lines, from

Cartesian coordinates to parallel coordinates. In

parallel coordinates, data points in n dimensions are

usually represented as polylines with vertices on n

consecutively placed axes in the 2D image plane. To

create a parallel coordinates plot, an n-dimensional

dataset is split into n − 1 independent 2D subspaces,

and each subspace is then plotted in the image plane

defined by two adjacent parallel axes.

We introduce the point-line duality using an

elementary case of a 2D subspace spanned by x1 and x2.

Here, we denote the horizontal and vertical coordinates

of a point in the parallel coordinates image plane as x

and y, respectively. We assume that the origin of the

image plane is at x1 = 0, and the distance between

the two parallel axes (x̄1 and x̄2) is 1. In Cartesian

coordinates, a 2D data item (q, r) is represented as

a point P . The representation of point P in parallel

coordinates is a line segment P̄ with endpoints (0, q)

and (1, r) (see Fig. 1(a)).

Fig. 3 Asymmetric representation of 1-flat indexed points with

negative and positive slopes.

In contrast, a line in Cartesian coordinates is mapped

to a point in parallel coordinates. In Cartesian

coordinates, a line l can be described as:

l : x2 = ax1 + b, (1)

where a and b are the slope and intercept of l,

respectively. To derive the representation of l in parallel

coordinates, we pick two points P1 and P2 from l and

calculate their corresponding line segments P̄1 and P̄2,

and find the intersection point l̄ as shown in Fig. 1(b,

c). Therefore, point l̄ is the parallel coordinates

representation of line l in Cartesian coordinates [18]:

l̄ = (x, y) =

(
1

1− a
,

b

1− a

)
, a ̸= 1. (2)

These point-to-line and line-to-point mappings

comprise the point-line duality, which is a fundamental

property of parallel coordinates. In fact, the point

representation l̄ is also called the 1-flat indexed point of

l̄ [18, 36], and this terminology is adopted in our paper.

To facilitate the discussion, we write l in its general

implicit form to achieve complete generality:

l : c1x1 + c2x2 + c3 = 0 . (3)

We can express l by its parameters as line coordinates,

i.e., a tuple [c1, c2, c3] in homogeneous coordinates.

The associated indexed point l̄ can also be described

in parallel coordinates by a tuple in homogeneous

coordinates. Therefore, the following relationships

between the triples l and l̄ can be obtained:

l : [c1, c2, c3] → l̄ :

{
(c2,−c3, c1 + c2), c2 ̸= 0 ,

(0,−c3/c1, 1), c2 = 0 .
(4)

3.2 Mapping Rationale

The point-line duality results in asymmetric

representation of 1-flat indexed points in parallel

coordinates associated with negative and positive lines

in parallel coordinates. For example, as shown in

Fig. 3, the indexed point l̄1 of line l1 : x2 = −0.5x1

is at (2/3, 0), whereas the indexed point l̄2 of line

l2 : x2 = 0.5x1 is at (2, 0), and they are not symmetric

4
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Fig. 4 Transformation pipeline: infinitely long parallel lines in traditional parallel coordinates are mapped to curved lines of

limited length that intersect each other in angle-uniform parallel coordinates. The transformation is applied to every point in the

2D image plane of traditional parallel coordinates: an example is illustrated by a point l̄ (highlighted in a blue box). The underlying

uniform grid of traditional parallel coordinates is deformed to a curvilinear grid that is bounded horizontally in angle-uniform parallel

coordinates (blue, at top).

about the x̄2 axis. Vertical lines x = 2/3 and x = 2

indicating all Cartesian lines with slopes a = −0.5 and

a = 0.5 are also drawn in Fig. 3. As the slope of a

line approaches +1, the location of its indexed point

approaches positive or negative infinity. Therefore,

interpretation of line information from the location of

an indexed point of a line with a positive slope close to

+1 is difficult.

We address the asymmetry issue with a nonlinear

mapping. We would like all parallel lines except for

vertical ones to have intersections in our deformed

space. Vertical lines are kept non-intersecting by design

to be consistent with the behavior of attribute axes in

traditional parallel coordinates.

Using our approach, all 1-flat indexed points,

including those of slope +1, can be displayed in a

limited 2D area. Fig. 4 shows a synthetic dataset

with two identical attributes, resulting in a perfectly

correlated line of slope +1. This leads to parallel lines

in traditional parallel coordinates (see Fig. 4(left)),

where no indexed points can be seen because they are

at positive or negative infinity. After our nonlinear

mapping (see Fig. 4(right)), parallel lines become

curves that intersect at horizontal locations at -0.5 and

1.5 in the 2D image plane, and all 1-flat indexed points

(shown in blue) are located at these two intersection

points, indicating a perfect correlation. Fig. 4(top)

shows how the underlying grid of the 2D image plane

of parallel coordinates is deformed. Furthermore, the

orientation of the line associated with a 1-flat indexed

point can now be read off from the visualization as

shown in the zoomed-in insets of Fig. 4.

4 Method

In this section, we derive our transformations of

parallel coordinates step by step. For the ease of

description, we start by explaining the transformation

of 1-flat indexed points in parallel coordinates, and

extend the transformation to lines afterwards. The

transformation pipeline is shown in Fig. 4.

4.1 Design Considerations

Ideally, the new parallel coordinates model

should offer symmetric patterns of positive and

negative correlations while preserving the benefits

of traditional parallel coordinates: data traceability

across dimensions, and dimensionality scalability. To

achieve these, we list the design goals of our method

as follows:

G.1 The infinite horizontal range of parallel coordinates

should be bounded.

G.2 Orientations of Cartesian lines should map linearly

to horizontal positions.

G.3 The relative relationship between vertical and

horizontal coordinates in the original parallel

coordinates should be preserved.

G.4 A curve transformed from a line segment in a

subspace of parallel coordinates should have C1

continuity.

G.5 Curves transformed from a polyline that represents

a multidimensional data sample should have C0

continuity across different attribute axes.

G.6 The curve transformed from a line segment in a

subspace should be symmetric under exchange of

adjacent attribute axes.

The meanings of these goals are illustrated in Fig. 5.

G.1 is the basic goal of bounding parallel coordinates

5
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Fig. 5 Design goals G.1–G.6 of our transformation.

Solid colored lines indicate lines in the traditional parallel

coordinates, dashed lines indicate curves in the transformed

parallel coordinates. Hollow squares and filled disks indicate

1-flat indexed points of the traditional and transformed parallel

coordinates, respectively.

horizontally. G.2 allows direct and intuitive acquisition

of orientations of Cartesian lines in the deformed

space. Patterns in the original parallel coordinates

are preserved by G.3. To trace a data item within

the image plane formed by a pair of parallel axes,

the data has to be drawn as a smooth curve as

in G.4. G.5 is necessary for tracing data items across

multiple parallel axes as two curves with the same

data values meet at the same vertical location. The

need for symmetric representations along with aesthetic

considerations leads to G.6 that the curve should

be symmetric under exchange of adjacent attribute

axes, i.e., curves before and after the swap should

be mirrored at the center of the attribute pair, and

a horizontal curve before transformation should be

mirror-symmetric at the center of the attribute pair.

4.2 Transformation of 1-flat Indexed Points

We consider a 1-flat indexed point l̄ of line l :

c1x1 + c2x2 + c3 = 0. Using the line coordinates of

l : [c1, c2, c3], we denote the mapping by:

F : [c1, c2, c3] 7→ (u, v), c1, c2, c3 ∈ R, (u, v) ∈ R2,

where (u, v) are the output point coordinates in the 2D

image plane of parallel coordinates.

Fig. 6 Relationship between the slope a and the orientation

θ of a line l is shown in Cartesian coordinates (a) and parallel

coordinates (b). The 2D image planes are divided into three

regions: I, II, and III. In traditional parallel coordinates, the

horizontal extents of regions II and III are infinite. In contrast,

in the orientation representation, regions II and III become

bounded horizontally.

4.2.1 Angle-Uniform Horizontal

Transformation

The goals of the horizontal transformation are to

transform 1-flat indexed points into a finite horizontal

range (G.1), using a linear representation for the

horizontal coordinate (G.2). We start by replacing

the horizontal coordinate of parallel coordinates from

a slope-based metric to an orientation-based one. The

relationship between the slope a and the orientation θ

of l in Cartesian coordinates is illustrated in Fig. 6(a).

From the line coordinate description [c1, c2, c3], we

may compute θ as:

θ =

{
±π/2, c2 = 0,

arctan(−c1/c2), c2 ̸= 0.

Then, we must transform θ to the 2D image coordinate

u to match the distance between the pair of parallel

axes. This is done by scale-and-bias:

u =


2θ/π − 1, θ > π/4,

2θ/π + 1, θ < π/4,

−0.5 and 1.5, θ = π/4.

(5)

We set the left bound of u to -0.5 and the right

bound to 1.5 to build a symmetric representation in

the horizontal coordinate. Fig. 6(b) illustrates the

relationship between a, θ, and u. With this horizontal

transformation, goals G.1 and G.2 are achieved.

4.2.2 Structure-Preserving Vertical

Transformation

A proper vertical transformation has to be designed

to achieve the remaining design goals. In traditional

6
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parallel coordinates (with 2D point coordinates

described by Equation 2), the vertical coordinate is

related to the horizontal coordinate by the intercept

b of the line for a ̸= 1:

b = y/x, x ̸= 0.

To preserve the relative ratio between horizontal and

vertical coordinates of traditional parallel coordinates,

we define the transformed vertical coordinate v as:

v = (u− 0.5)
y

(x− 0.5)
, u ̸= −0.5, 0.5, 1.5. (6)

The origin of the transformation is set to the center

of the axis pair (x = u = 0.5) to meet the goal of

symmetry (G.6). To fully define v in the 2D image

plane of parallel coordinates, we need to handle two

special cases not covered by Equation 6. First, for

u = 0.5, i.e., 1-flat indexed points with x = 0.5, a = −1

is located at the center of the attribute pair, leaving

v undefined. Second, for indexed points at infinity

(a = 1), we have mapped the transformed horizontal

coordinate to -0.5 and 1.5 in Section 4.2.1, but the

vertical coordinate is not yet defined. We address

these exceptions using the limit method, i.e., taking

the vertical coordinate of a transformed point whose

horizontal coordinate is infinitely close to the point of

question as the vertical coordinate.

Then, the transformed vertical coordinate

considering all cases is defined as:

v =


v−0.5, u = −0.5

v0.5, u = 0.5

v1.5, u = 1.5
(u−0.5)y
(x−0.5) = 2c3(u−0.5)

(c1−c2)
, otherwise .

(7)

A detailed derivation of Equation 7 is provided in

Appendix I.1. This mapping preserves the vertical

versus horizontal information in traditional parallel

coordinates as shown in Fig. 7. As seen in Fig. 7(b),

transformed curves preserve the relative relationships of

lines in traditional parallel coordinates (see Fig. 7(a)),

satisfying G.3 in the horizontal direction; G.4 is also

achieved as transformed curves are smooth. Moreover,

the curves are mirror symmetric about the the center

of the attribute pair, satisfying G.6; G.5 is achieved as

transformed vertical values v on parallel axes (u = 0, 1)

are equal to the original values y.

In some cases, round curves yielded by the vertical

transformation may need to be flattened within the

attribute pair to retain the look of traditional parallel

coordinates. Therefore, an optional scaling function

s(u) can be included as a factor in Equation 7:

vs = s(u)v. (8)

Fig. 7 Vertical mapping without scaling when applied to

a synthetic dataset containing identical attributes transforms

the parallel lines in (a) to asymmetric curves (b). Using the

vertical scaling function, the curves within the attribute pair are

flattened (c).

This scaling function is included to provide more

flexibility in curve design to the user, but is not

required.

4.2.3 The Vertical Scaling Function

We study how to flatten the vertical coordinate of

Equation 7 by taking point samples on a horizontal

line y = C in parallel coordinates. The ratio r between

the transformed and original vertical coordinates can

be written as:

r =
v

y
=

(u− 0.5)

(x− 0.5)
, −0.5 ≤ u ≤ 1.5 . (9)

We treat the three regions (I, II, III in Fig. 6) of the

2D image plane separately; a derivation of the piecewise

scaling function g(u) is provided in the Appendix. If we

multiply v by g(u), goals G.4 and G.5 are not satisfied

because the function is not continuous at u = 0 and

u = 1.

This is an over-constrained problem, which we resolve

by use of cubic spline [6] interpolation to ensure

smoothness of the scaling function. The eleven control

points that the derived cubic spline s(u) must pass

through are detailed in Appendix I.2. The cubic spline

7
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scaling function s(u) has C2 continuity and satisfies

goals G.4–G.6. The full transformation with the

scaling function s(u) applied to the synthetic dataset

is shown in Fig. 7c.

Please note that most example images of this paper

do not employ vertical scaling: the only exceptions are

Fig. 7(c) and Fig. 12(b).

4.3 Transformation of Parallel Coordinates

Lines

A parallel coordinate line P̄ can be transformed by

applying point transformations to a set of samples on

the line. We sample the parallel coordinate line at

equal angle intervals ∆θ. We then obtain homogeneous

coordinates [c1, c2, c3] for each sample as detailed

in Appendix II. Given the homogeneous coordinates

representation of all points on P̄ , the transformed curve

in angle-uniform parallel coordinates can be generated.

For simplicity, we generate the transformed curve by

transforming all samples on P̄ and connecting these

transformed points with short line segments.

5 Visualization and User Interactions

Directly applying the transformation from Section 4

to traditional parallel coordinates is sufficiently

effective to provide a symmetric visualization of

negative and positive correlations as shown in Fig. 8(a).

However, if the dataset contains more than two

attributes, the visualization is cluttered as curves of one

pair of attributes extend to neighboring pairs, causing

overdraw.

In this section, we present a combined subsampling

and density visualization approach that reduces

visual clutter and facilitates pattern recognition

in multidimensional data. Newly designed user

interactions for exploratory data analysis, namely

corner filtering and density plot brushing, are also

explained.

5.1 Combined Subsampling and Density

Visualization

We propose a combined subsampling and density

visualization approach for angle-uniform parallel

coordinates. In this visualization, a ‘curve’ layer

(Fig. 8(b)) of transformed curves from the down-

sampled dataset with a sampling rate of 5% [7] and

a ‘density’ layer of a density plot (see Fig. 8(c)) of the

whole dataset are alpha-blended together.

The curve layer contains transformed curves only

inside parallel coordinates as in traditional polyline-

based parallel coordinates, i.e., only the part for 0 ≤

Fig. 8 Workflow to generate a combined subsampling and

density visualization.

u ≤ 1 is transformed; data entries of these curves are

given by downsampling the multidimensional data in

order to preserve discrete features of the data. Outliers

in a dataset are important; a naive downsampling

scheme could remove them and result in misleading

visualizations. Therefore, we detect outliers in the

multidimensional data domain [28] and mark the top

k outliers according to ranking. These outliers are

rendered in addition to the subsampled data entries in

the visualization.

The density layer is a density representation of the

full curves of the whole dataset. For simplicity, we use a

binning strategy by accumulating curve density into an

accumulation buffer. Note that any density model can

be used to generate the density plot. The accumulation

buffer is rendered with a series of 1D transfer functions.

Each pair of attributes has an associated 1D transfer

function, comprising a colormap and an opacity map,

to map a scalar value to a certain color and opacity.

Due to the high dynamic range of the density plot,

non-linear opacity maps must be used. Fig. 9 shows

how different transfer functions affect the rendering.

A transfer function with a steep opacity ramp and a

short high opacity range (see Fig. 9(b)) can remove

the sparse regions that cover most of the screen area

in Fig. 9(a) to highlight the region of high density.

Therefore, we embed the transfer function adjustment

interface into our interactive system so users can more

flexibly generate the density layer.

Finally, the combined subsampling and density

visualization is generated by overlaying the density

layer over the curve layer using alpha-blending (see

Fig. 8). The visualization preserves both the local

nature of discrete parallel coordinates and the global

patterns from the density representation. Compared to

Fig. 8(a), the new visualization greatly reduces visual

clutter. High-density structures with both negative and

8
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Fig. 9 Combined subsampling and density visualizations with

different transfer functions.

positive correlations are clearly visible in Fig. 8(d).

In combined subsampling and density visualization,

dense features are of interest because density is

associated with the number of data entries that are

linearly correlated. The spreading range of a feature is

inversely associated with the strength of correlation of

data: a perfectly correlated structure in data is shown

as a single pixel of high density. The shape of a feature

also reveals information: a shape stretched vertically

indicates parallel linear structures in Cartesian space,

while a horizontally spread shape indicates linear

structures with smoothly changing orientations and

similar intercepts.

5.2 Corner Filtering

Adjusting the transfer function is a typical approach

to feature filtering in density plots. However, opacity

thresholds of transfer functions are based on the global

data range without spatial information, which may

not preserve important local features. For example,

an intersection with a low density value is likely to

be filtered out when the transfer function is set for

intersections with high density values. Therefore, we

apply corner detection, which uses a sliding window to

check each local neighborhood and computes isotropy

metrics for each pixel in the image, to further filter the

Fig. 10 An image mask generated by corner filtering (a) and the

overlaid result (b) that highlights the areas of curve intersections.

density image.

Specifically, the covariance matrix of derivatives of

the neighborhood is calculated, and eigenvalues are

computed and the pixel value of the metric image is

assigned to the minimum eigenvalue. Then, the metric

image is normalized and used to build an image mask

given a user-selected threshold during visualization. In

some cases, a local percentile filter, which filters pixels

below a certain percentile in the local neighborhood,

can be applied before corner filtering to keep corner

pixels with low intensities. The mask is created by

drawing disks, with an opacity gradient that is fully

opaque in the center and linearly falls off to fully

transparent, into an accumulation buffer when the

pixel value of the metric image is greater or equal to

the threshold. Fig. 10 shows an example of a mask

generated by thresholding the corner metric image.

5.3 Density Plot Brushing

Brushing and linking are important in parallel

coordinates; existing brushing methods for parallel

coordinates select either ranges on axes [9, 31] or line

segments in adjacent axes within a range of slopes [11].

A new type of brush is required for selecting regions

in the density plot combining subsampling and density

visualization of angle-uniform parallel coordinates (see

Fig. 2(d)).

In essence, the brush tests all curves in a given

2D subspace of the data and highlights curves that

pass through a user-drawn region. In our current

implementation, we redraw all entries of the data in the

2D image plane of angle-uniform parallel coordinates

9
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Fig. 11 Comparison of four variants of parallel coordinates using the synthetic dataset (see Section 6.1). Line intersections

representing strong positive and negative linear correlations are marked with orange boxes and numbers (in agreement with Fig. 2).

The horizontal coordinates of intersections are marked and measured.

and test curves against the user-drawn region. Both

simple rectangle and arbitrary-shaped lasso brushes are

supported.

6 Case Studies

In this section, we demonstrate the advantages

of combined subsampling and density visualization

of angle-uniform parallel coordinates over traditional

parallel coordinates and their variants, as well as

2D scatterplots, through synthetic and real-world

examples.

6.1 Synthetic Dataset

To help readers better understand angle-uniform

parallel coordinates as a new visualization technique,

we constructed a synthetic dataset that contains several

linear correlation structures. The visualization results

using this synthetic dataset highlight the benefits of

angle-uniform parallel coordinates in analyzing linear

relationships. This example also demonstrates that

visual pattern analysis can be aided by brushing and

corner filtering.

The synthetic dataset was constructed by sampling

a set of 2D Gaussian distributions with covariance

matrices of corresponding angles. Specifically, the

data points were sampled from twelve line segments,

including three lines of −5◦, 15◦, and 56◦, respectively,

and nine parallel lines of 30◦. The 15◦ line, among

others, was most densely sampled.

6.1.1 Visual Pattern Interpretation

Fig. 2(a) shows that only one strong crossing pattern

of negative correlation (highlighted by the orange

box) can be seen when using traditional parallel

coordinates. The discrete nature of the data can be

partly visualized by clusters of line segments. With

combined subsampling and density visualization of

angle-uniform parallel coordinates (see Fig. 2(c)), and a

transfer function with a blue-to-white color map, much

more insight is given; several visual patterns of high

density (in light blue or white) can be seen.

Given these visual patterns, we are able to build

a mental image of the data (labeled in Fig. 2(c) and

Fig. 11(d)):

1. A high-density line structure with an orientation

of roughly π/12 (15◦).

2. Several parallel line structures oriented towards

π/6 (30◦).

3. The same negatively oriented linear structure seen

in the traditional parallel coordinates still occurs.

4. A medium density line structure with an angle a

little greater than π/4 (around 56◦).

A clearer visualization (Fig. 2(d)) is achieved by

filtering out weak visual patterns using corner filtering

and brushing on strong visual patterns with lassos.

With this diagram, we are able to validate our

interpretation of the dataset as seen in the scatterplot in

Fig. 2(d). We associate the brushed patterns in parallel

coordinates with the corresponding linear structures in

the Cartesian data domain by highlighting the curves

with the same colors as the brushes.

6.1.2 Comparison to Variants of Parallel

Coordinates

To further demonstrate the benefits of angle-

uniform parallel coordinates (AUPC), we compared

AUPC, traditional parallel coordinates (PC), and

variants of the latter. Since AUPC deforms the

image plane of parallel coordinates, and thereby

transforms polylines into curves, we chose two

representative curve variants of parallel coordinates:

curved parallel coordinates (CPC), and bundled curve

parallel coordinates (BCPC) [12], which achieve better

visual separation between data clusters and provide a

clearer overview of the dataset.

We downsampled the synthetic dataset at a rate of

10
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Fig. 12 Traditional parallel coordinates colored by K-means clustering (a), the combined subsampling and density visualization of

angle-uniform parallel coordinates (b), and a 5D part of the SPLOM (c) of the white wine quality dataset. Concentrated patterns

are marked with numbers and their associated 2D histograms are shown. Our visualization reduces clutter and preserves both global

and local correlation patterns. An outlier of the Density attribute is marked with a blue curve in (b) and blue points in (c).

4% to avoid cluttering the image planes and ensure that

lines and curves could be traced. For CPC and BCPC,

we used an open-source Javascript implementation [3],

setting the smoothness scale α = 1/6 and bundling

strength β = 0 for CPC, and α = 1/6, β = 0.8 for

BCPC as the recommended values for best balancing

correlation detection and cluster visualization [12]. For

AUPC, we did not apply the combined subsampling and

density visualization to ensure fairness of comparison.

As Fig 11 shows, all methods can reveal the negative

correlation pattern (number 3), but only AUPC reveals

positive correlations. As the horizontal coordinate of

PC, CPC, and BCPC is not linearly mapped to the

angle of Cartesian lines, the slope of the disclosed

negative linear structure can easily be misjudged,

especially in BCPC, where the intersection point is

moved significantly towards the middle. Although

individual positive correlations can be identified by

expert users through a small bundle of disjoint curves in

BCPC, only a vague impression of a large proportion of

positive correlations can be obtained from Fig. 11(c),

where multiple positive and negative correlations are

involved and occlude each other.

In contrast, our AUPC can clearly show both

negative and positive correlations, and users can

quantify the slopes of Cartesian lines accurately from

the horizontal coordinates of the intersections.

6.2 White Wine Quality

The white wine quality data [5] contains 4897

samples of 11 chemical properties as continuous

variables and a subjective quality attribute as an

ordinal variable. We discard the quality attribute and

rearrange the order of axes to generate the visualization

in Fig. 12.

11
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Fig. 13 Visualization of attributes pressure and temperature of a downsampled version of the Hurricane Isabel simulation using

(a) traditional parallel coordinates, (b) combined subsampling and density visualization of angle-uniform parallel coordinates,

(c) corner filtering and density plot brushing, and (d) highlighted patterns in the data domain.

Traditional parallel coordinates have no color

encoding for unlabeled data. However, in combined

subsampling and density visualization, the color map

can be used to discriminate different attribute pairs

when drawing the density plot. For a fair comparison of

our method to traditional parallel coordinates in terms

of perception, we add the color channel to traditional

parallel coordinates by first clustering the data points

using the K-means algorithm and then coloring them

according to cluster labels. With traditional parallel

coordinates (see Fig. 12(a)), it is difficult to visualize

correlations of attributes and the coloring is not very

effective due to occlusion.

In contrast, the combined subsampling and density

visualization of angle-uniform parallel coordinates (see

Fig. 12(b)) allows a better understanding of correlations

and visualization of outliers. Note that this plot

employs the optional vertical scaling function. Strong

correlations are shown as concentrated high-density

patterns for several attribute pairs: chlorides–sulphates

(marked as number 1), total sulfur dioxide–density

(number 2), and density–alcohol (number 3). It is clear

from these density patterns that:

1. the regression line of chlorides–sulphates is almost

vertical (see also histogram 1);

2. the slope of the regression line of total sulfur

dioxide–density is between 0◦ and 45◦ (see

histogram 2);

3. density–alcohol has a negative correlation with the

angle of the regression line close to −3π/8 (−67.5◦,

see histogram 3).

This pair-wise correlation information can also be

visualized in a SPLOM (see Fig. 12(c)) that shows

a 5D subspace of the data. However, following data

across higher dimensions (e.g., ≥ 8D) is much easier

with parallel coordinates and angle-uniform parallel

coordinates. For example, an outlier in the ‘density’

attribute marked by a blue curve in the combined

subsampling and density visualization of angle-uniform

parallel coordinates can be easily traced across all

dimensions. It is already challenging to locate attribute

values of outliers in the 5D SPLOM, let alone trace all

attribute values in the full SPLOM.

Another advantage of parallel coordinates and angle-

uniform parallel coordinates over SPLOMs is that they

scale better with increasing dimensionality. The limited

display area causes the outliers to be rendered too

small to be seen in the SPLOM. Therefore, repetitive

zooming-and-panning (see Fig. 12(c) inset) is required

for users to access detailed information. This excessive

context switching can easily break the user’s mental

map.

6.3 Hurricane Isabel

The Hurricane Isabel simulation dataset is a widely

used multivariate volume dataset containing 500×500×
100 spatial samples [16]. Here, we use attributes of time

step 25.

6.3.1 Analysis of Two Attributes

We analyze the pressure and temperature attributes

with a downsampled dataset of resolution 50× 50× 10.

The traditional parallel coordinates plot is shown in

Fig. 13(a). Some basic discoveries can be made from

this visualization, e.g., several discrete line groups

exist, indicating the down-sampled nature of the data,

and a large portion of samples have low pressure.

However, we identify drawbacks at two scales: at the

global scale, it is impossible to learn about the linear

relationships of the whole dataset; at a finer scale, it is

unclear how samples inside one line group correlate or

whether they have linear relationships. With combined

subsampling and density visualization of angle-uniform

parallel coordinates (see Fig. 13(b)), one can easily

read off information about linear relationships at

different scales. Both local and global patterns can be

highlighted in the data domain (Fig. 13(d)) by brushing

on strong patterns after corner filtering (Fig. 13(c)).

12
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Fig. 14 Four attributes of the Hurricane Isabel data visualized using (a) combined subsampling and density visualization of angle-

uniform parallel coordinates, (b) SPLOM, and (c) indexed-point visualization of angle-uniform parallel coordinates.

6.3.2 Multiple Attributes

In the above examples, we have seen that

angle-uniform parallel coordinates can convey more

information than traditional parallel coordinates. A

major benefit of parallel coordinates and its variants

is that it is easier to visualize multidimensional

relationships of specific samples compared with

SPLOM. However, with data that contains only two

attributes, they do not outperform scatterplots in terms

of linear relationship analysis.

Parallel coordinates suffer from visual clutter

as data size and dimensionality increase. Our

combined subsampling and density visualization

approach integrates the benefits of uncluttered curves

for multidimensional attribute tracking and density

plots for linear relationship analysis. To demonstrate

the advantages of combined subsampling and density

visualization of angle-uniform parallel coordinates, we

conducted a further experiment using four attributes

of the Isabel dataset: speed, height, pressure and

temperature. Note that the dataset was Monte-Carlo

sampled with a sampling rate of 1%.

By examining the density plot and sub-sampled

curves, it is clear from Fig. 14(a) that:

1. the lower half of height has a strong negative

correlation with temperature, and the Cartesian

angle is around −45◦

2. these temperature samples have a strong positive

correlation with pressure with a small positive

angle

3. the top part of height has lowest temperature and

medium pressure

4. one outlier has lowest height, highest temperature

and lowest pressure.

With a SPLOM (see Fig. 14(b)), linear information

can be visualized. However, it is impossible to learn

the relationship between attributes of specific samples

without brushing and linking.

Comparing the combined subsampling and density

visualization of angle-uniform parallel coordinates

(see Fig. 14(a)) with the 1-flat indexed-point [36]

(Fig. 14(c)), it is noticeable that:

1. indexed points of local correlations form similar

global patterns as for the density plot

2. indexed points reveal more details inside high

density regions

3. global density patterns cover regions that are not

seen in the indexed-point visualization, e.g., the

thin yellow band that stretches across the last sub-

dimension.

7 Discussion

7.1 Representation Ability and Intuitiveness

We now consider the trade-off between representation

ability and intuitiveness. Although regions II and III

(see Fig. 6(b)) intrinsically exist in parallel coordinates

as given by the point-line duality, they are discarded in

almost every use case because of the problems caused

by the infinite image plane, to make parallel coordinates

easy to interpret. However, this simplification

prevents parallel coordinates from representing positive

correlations, which is a limitation in visual analysis

tasks. In our angle-uniform parallel coordinates, we

compress the image plane from being infinite to finite

size through geometric deformation, allowing regions II

and III to be fully visualized. Although our method

sacrifices intuitiveness compared with other variants of

parallel coordinates, it restores the full representation

ability of the original parallel coordinates model and

extends its application by allowing quantitative visual

interpretation of Cartesian lines.

7.2 Information Loss

Our method of combined subsampling and density

visualization is designed so as to minimizing

information loss during the visualization process

13
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that blends two image layers. In the curve layer,

local patterns like outliers are detected in the data

domain and preserved during subsampling. In the

density layer, the density plot is computed from

the whole dataset and therefore contains global

information. Combining these two techniques can

preserve important information in the input dataset

while significantly reducing visual clutter. One

limitation, however, is that users may lose track of

some curves covered by high-density areas. This

problem can be addressed by adjusting the transfer

function and opacity values in our interactive system.

7.3 Future Work

We plan to improve our method in three directions in

future. Firstly, only 1-flat indexed points are supported

by angle-uniform parallel coordinates, so a new

mathematical model for angle-uniform representations

of higher-dimensional p-flats [36] is needed. Secondly, a

full-fledged visual analysis system should be built with

machine learning methods to help the user cluster the

density plot with ease. Lastly, we intend to conduct a

complete and comprehensive user study to evaluate the

utility of various parallel coordinates methods including

angle-uniform parallel coordinates for different tasks.

8 Conclusions

In this paper, we have proposed angle-uniform

parallel coordinates, a general data-independent

parallel coordinate model that deforms traditional

parallel coordinates to provide more insight without

destroying important geometric relationships. The

biggest benefit of our method is that a symmetric

representation of Cartesian lines of any orientation

is achieved. Our combined subsampling and density

visualization approach allows effective visual analysis of

linear correlations, and regressions of multidimensional

datasets can be performed in angle-uniform parallel

coordinates without context switches. The data

independence of our method makes it applicable to all

multidimensional datasets. Further, the method can

be easily implemented and incorporated within existing

parallel coordinate frameworks.
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I Transformation of 1-flat Indexed

Points

We detail the derivation of special cases of v and

the scaling function s(u) in the transformation from

traditional to angle-uniform parallel coordinates.

I.1 Special cases of v in Equation 7

We address the exceptions using the limit method,

i.e., taking the vertical coordinate of a transformed

point l̄t = (ut, vt) whose horizontal coordinate is

infinitely close to the point of question l̄c = (uc, vc)

as the vertical coordinate of l̄c: vc = vt where

|ut − uc| = δ, δ > 0, δ → 0, δ ∈ R. For the

case of u at u0.5 = 0.5, we approach the point

(u0.5, v0.5) by averaging the vertical coordinates of

points (−δ, vt0.5− ), (δ, vt0.5+ ) with δ → 0 from the

left and the right:

v0.5 = 0.5(vt0.5− + vt0.5+ ) , (10)

where ut0.5−
= 0.5− δ, ut0.5+

= 0.5 + δ .

If u = −0.5, the point is approached from the right,

while for u = 1.5, the point is approached from the

left:

l

v−0.5 = lim
δ→0

v−0.5+δ = vt−0.5 ,

v1.5 = lim
δ→0

v1.5−δ = vt1.5 ,

where ut−0.5 = −0.5+ δ+ δ and ut1.5 = 1.5− δ. This

gives all cases for the transformed vertical coordinate

in Equation 7.

I.2 Derivation of s(u)

We keep the ratio r(u) intact for region II (with

u ∈ (1, 1.5]) and III (with u ∈ [−0.5, 0)), by setting

the scaling factor to:

gII(u) = 1, 1 < u ≤ 1.5, (11)

gIII(u) = 1, −0.5 ≤ u < 0.

For region I (with u ∈ [0, 1]), we set the scaling factor

to 1/r(u):

gI(u) = 1/r(u), 0 ≤ u ≤ 1 . (12)

The piecewise scaling function g(u) then is:

g(u) =


gIII(u), −0.5 ≤ u < 0

gI(u), 0 ≤ u ≤ 1

gII(u), 1 < u ≤ 1.5 .

(13)

If we multiply v by g(u), goal G.4 is not satisfied

because the function is not continuous at u = 0 and

1, since g′I(0) ̸= lim
u→0−

gIII(u) and g′I(1) ̸= lim
u→1+

gII(u).

This is an over-constrained problem, and we

resolve it by using spline interpolation. To ensure the

smoothness of the scaling function, we approximate

the piecewise scaling function g(u) using a cubic

spline s(u). In order to satisfy goals G.4–G.6 and to

avoid oscillations of transformed curves that hinder

perception, we specify eleven control points that the

cubic spline s(u) must pass through:

• l̄1C at u = −0.5: (−0.5, 1.306).

• l̄2C at u = −0.25: (−0.25, 1.153).

• l̄3C at u = 0: (0, 1).

• l̄4C at u = 0.1: (0.1, 0.9312).

• l̄5C at u = 0.25: (0.25, 0.8555).

• l̄6C at u = 0.5: (0.5, 0.812).

• l̄7C at u = 0.75: (0.75, 0.8555).

• l̄8C at u = 0.9: (0.9, 0.9312).

• l̄9C at u = 1: (1, 1).

• l̄10C at u = 1.25: (1.25, 1.153).

• l̄11C at u = 1.5: (1.5, 1.306).

Since the spline is cubic, the scaling function s(u)

has C2 continuity. The fitted spline with the scaling

data and control points are illustrated in Figure 15.
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Angle-Uniform Parallel Coordinates 17

Fig. 15 Scaling function s(u) as a cubic spline. The control

points l̄C of the cubic spline are marked as orange circles.

II Transformation of Parallel

Coordinates Lines

The line equation of a parallel coordinates line P̄

of a 2D Cartesian point P = (p1, p2) can be derived

using the point-line duality:

P̄ : y = (p2 − p1)x+ p1. (14)

Therefore, for θ ̸= π/4, the 1-flat indexed point on

P̄ with θ, l̄θ
P̄
= (xθ

P̄
, yθ

P̄
), can be determined as:{

xθ
P̄

= 1/(1− tan(θ)),

yθ
P̄

= (p2 − p1)x
θ
P̄
+ p1 .

(15)

Further, with Equation 2, we are able to compute

the slope and intercept of the associated line l̄θ
P̄

in

Cartesian coordinates:

{
aθ
P̄

= tan(θ),

bθ
P̄

= yθ
P̄
/xθ

P̄
.

(16)

For the case θ = π/4, the transformed 1-flat indexed

point is calculated by the limit approach discussed in

Section 4.2.2 and Appendix I.1: we choose a θ which

is infinitely close to π/4. If the sample point is close

to −∞, θ = π/4+∆, and if the point is close to +∞,

θ = π/4−∆, where ∆ > 0, ∆ → 0. When θ = ±π/2,

because of the symmetry of angle-uniform parallel

coordinates, the point location remains intact after

transformation, i.e., on the left axis (u = 0) at

location v = y. We now have [c1, c2, c3] for all cases:


c1 = 1, c2 = 0, c3 = −p1, θ = ±π/2,

c1 = −a
π
4 ±∆

P̄
, c2 = −1, c3 = −b

π/4±∆

P̄
, θ = π/4,

c1 = −aθ
P̄
, c2 = 1, c3 = −bθ

P̄
, otherwise.

(17)

17


	Introduction
	Related Work
	Correlation Analysis with Parallel Coordinates
	Curved Parallel Coordinates
	Clutter Reducing Visualization

	Background and Rationale
	Point-Line Duality
	Mapping Rationale

	Method
	Design Considerations
	Transformation of 1-flat Indexed Points
	Angle-Uniform Horizontal Transformation
	Structure-Preserving Vertical Transformation
	The Vertical Scaling Function

	Transformation of Parallel Coordinates Lines

	Visualization and User Interactions
	Combined Subsampling and Density Visualization
	Corner Filtering
	Density Plot Brushing

	Case Studies
	Synthetic Dataset
	Visual Pattern Interpretation
	Comparison to Variants of Parallel Coordinates

	White Wine Quality
	Hurricane Isabel
	Analysis of Two Attributes
	Multiple Attributes


	Discussion
	Representation Ability and Intuitiveness
	Information Loss
	Future Work

	Conclusions
	Transformation of 1-flat Indexed Points
	Special cases of v in Equation 7
	Derivation of s(u)

	Transformation of Parallel Coordinates Lines



